Tolerability and Clinical Activity of Novel First-In-Class Oral Agent, inobrodib (CCS1477), in Combination With Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma

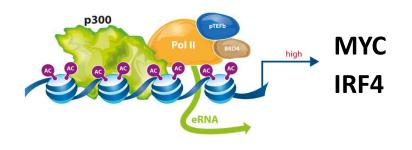
Emma Searle^{1,2}, Victoria Campbell³, Charlotte Pawlyn^{4,5}, Ceri Bygrave^{6*}, Sarah Gooding⁷, James Cavet¹, Matthew W. Jenner⁸, Vivek Radhakrishnan⁹, Steve Knapper¹⁰, Dima el-Sharkawi⁵, Jenny O'Nions^{11*}, Tomasz Knurowski¹², Karen Clegg, PhD¹², Will Henry West¹², Debbie Haynes¹², Kris Frese¹² and Tim Somervaille^{1,2}

¹The Christie NHS Foundation Trust, Manchester, United Kingdom,² University of Manchester, Manchester, United Kingdom, ³Department of Haematology, Western General Hospital, Edinburgh, United Kingdom, ⁴Institute of Cancer Research, Sutton, United Kingdom, ⁵The Royal Marsden NHS Foundation Trust, London, United Kingdom, ⁶Department of Haematology, Cardiff & Vale University Health Board, Cardiff, United Kingdom, ⁷MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, ENG, United Kingdom, ⁸University Hospital Southampton, Southampton, United Kingdom, ⁹University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom, ¹⁰Cardiff University School of Medicine, Cardiff, United Kingdom, ¹¹Department of Haematology, University College London Hospital, London, United Kingdom, ¹²CellCentric Ltd, Cambridge, United Kingdom

Abstract 1023 Presented by E Searle at ASH 2024; December 7–10, 2024; San Diego

The University of Manchester

Background


Inobrodib: First-in-class, oral, potent and specific bromodomain inhibitor of p300/CBP, two transcriptional coactivators with key roles in hematological cancers

Strong scientific rationale for targeting p300/CBP in myeloma

- selective displacement of p300/CBP from 10% of binding sites¹
- inhibition of key oncogenic drivers IRF4 and MYC
- exquisite synergy with IMiDs²

Clinical activity has been observed in patients with relapsed and refractory myeloma when given as a monotherapy (ORR 25%)³

We report on the combination of inobrodib (INO), pomalidomide (POM) and dexamethasone (DEX) in the ongoing Phase I/IIa trial (NCT04068597).

Cancer Cell	Article
Therapeutic targeting of EP300/CBP by bromodomain inhibition in hematologic malignancies	

¹Nicosia et al, Cancer Cell 2023

RESEARCH ARTICLE

Transcriptional Heterogeneity Overcomes Super-Enhancer Disrupting Drug Combinations in Multiple Myeloma

²Welsh et al, Blood Cancer Discovery 2024

³Searle E et al presented at ASH 2023

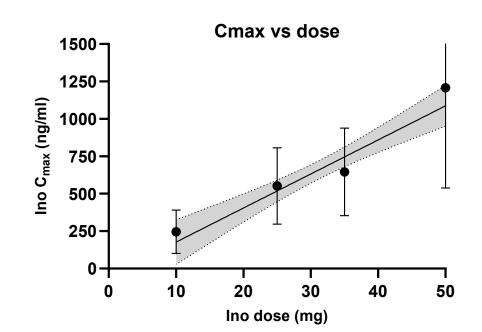
Study design

PI/IIa of Inobrodib in patients with advanced haematologic malignancies

Myeloma combination cohorts N =40

Three dose escalation cohorts

Inobrodib 4 day on 3 days off, 28-day cycles Pomalidomide Days 1-21 of each 28-day cycle Dexamethasone 20mg/ 40mg weekly **Primary objective** Establish safety profile and select doses for expansion cohorts


Secondary objectives

Characterise inobrodib pharmacokinetics Assess anti-myeloma efficacy (IMWG criteria)

Exploratory objectives

Explore PD biomarker profiling (e.g. IRF4,MYC) in paired BM and serial PBMC samples

Pharmacokinetic data

Ino dose (mg)	median Cmax (ng/ml)	median AUC (ng*hr/ml)	median Tmax (hr)
10	265	1079	1.5
25	581.5	2301	1
35	714	2825	1.5
50	1180	4315	1

Key Observations

- Dose proportional linear pharmacokinetics
- Rapid absorption
- Short half-life ~ 4-6 hrs supporting BID dosing

Background characteristics

Demographic / disease n=40	Total n (%)
Age median (range) yrs	68.5 (41-82)
Male sex	24 (60%)
White race	38 (95%)
ECOG PS 0 1 2	13 (32.5%) 23 (57.5%) 4 (10%)
Disease characteristics	4 (4 QQ ()
≥1 plasmacytoma*	4 (10%)
BM involvement ≥50%	17 (42.5%)
ISS stage at baseline/ study entry ** I II or III	6/25 (24%) 19/25 (76%)
Elevated LDH	15/40 (37.5%)
Cytogenetics	Data pending / analysis in progress

* No mandated MRI/ PET-CT

**Percentage of evaluable patients/data missing

Prior therapies and refractory status

Prior therapy n=40	Total n (%)
Prior lines; median (range)	5 (2-9)
Prior stem cell transplantation 1 2	18 (45%) inc. 1 allo SCT 9 (22.5%)
Triple-class exposed	40 (100%)
Refractory	
Lenalidomide *	31/38 (82%)
Pomalidomide *	28/40 (70%)
Triple-class *	28/37 (76%)
Penta-drug *	8/39 (20.5%)
aBCMA/TCE	12/40 (30%)
To last line	40 (100%)

Most patients were heavily pre-treated & triple class refractory, 30% had received an anti-BCMA and/or T cell engagers

Data cut 04 Nov 2024

*Percentage of evaluable patients/data missing

Patient disposition and exposure

Treatment Disposition	Total (N = 40)	25mg Ino/ 3mg Pom (N = 12)	25mg Ino / 4mg Pom (N = 19)	35mg Ino / 4mg Pom (N = 9)
Follow-up median (range), months	14.5 (6 – 25)	11.8 (6.8 – 15.4)	12.5 (5.5 – 24.7)	19.1 (16.5 – 20.8)
Ongoing, n (%)	9 (23%)	2 (17%)	5 (26%)	2 (22%)
Discontinued, n (%) Progressive disease TEAE Patient withdrawal	31 (77%) 24 (60%) 5 (13%) 2 (5%)	10 (83%) 9 (75%) 0 (0%) 1 (8%)	14 (74%) 11 (58%) 3 (16%) 0 (0%)	7 (78%) 4 (44%) 3 (22%) 1 (11%)
Exposure	Total (N = 40)	25mg Ino/ 3mg Pom (N = 12)	25mg Ino / 4mg Pom (N = 19)	35mg Ino / 4mg Pom (N = 9)
Duration of InoP treatment, median (range), months	6.1 (1.0 – 21.0)	7.4 (2.3 – 11.4)	5.5 (1.2 – 21.2)	10.0 (1.2 – 19.8)
Dose reductions of Ino, n (%)	8 (20)	3 (25)	4 (21)	1 (11)
Evaluable for ORR #	35	8	18	9

Data cut 04 Nov 2024

Pts evaluable for response assessment excluded 2 who discontinued due to patient decision and 3 who did not have IMWG measurable disease

Safety profile of InoPd: TEAEs irrespective of causality

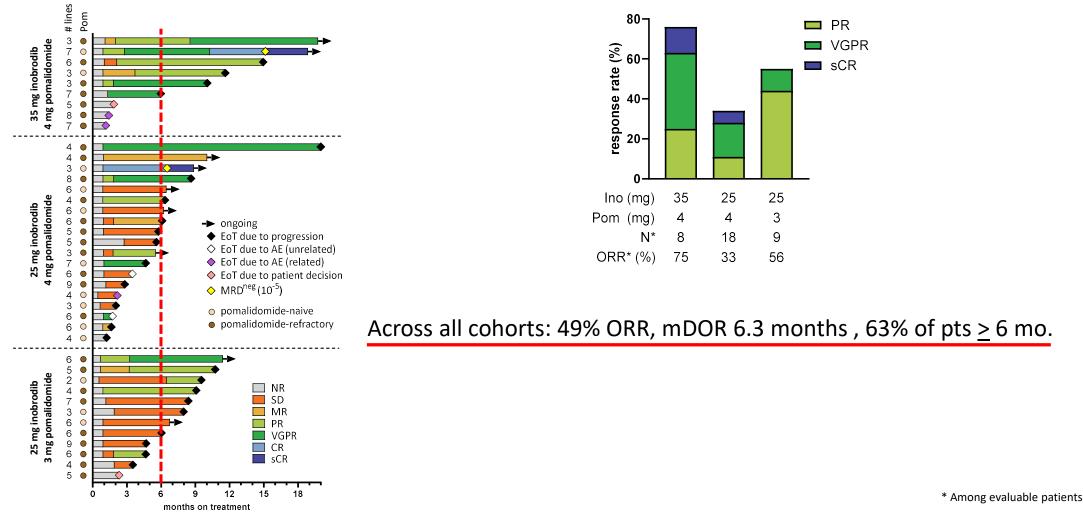
TEAEs	All Grades n (%)	Grade ≥3
Thrombocytopenia Bleeding	18 (45) 5 (12.5)	13 (32.5) 1 (2.5)
Anaemia	16 (40)	7 (17.5)
Neutropenia Febrile neutropenia	15 (37.5) 2 (5)	14 (35) 2 (5)
Fatigue	25 (62.5)	
Diarrhoea	18 (45)	1 (2.5)
Pyrexia	15 (37.5)	1 (2.5)
Constipation	12 (30)	
Pneumonia	12 (30)	8 (20)
UTI	12 (30)	3 (7.5)
Muscle spasms	12 (30)	
Myocardial ischaemia*	1 (2.5)	1 (2.5)
Discontinued due to TEAE	5 (12.5%)	

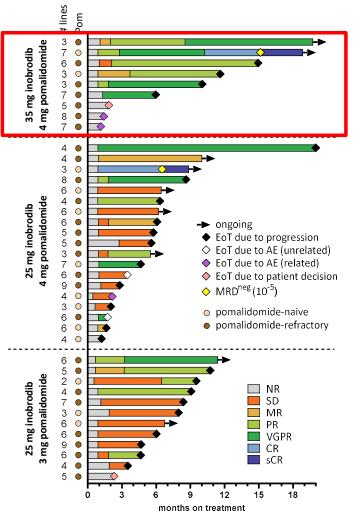
Key Observations

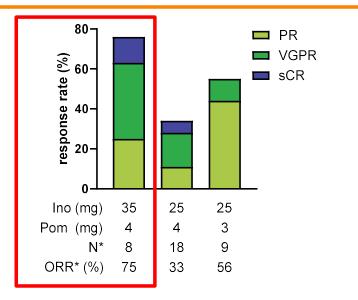
InoPomDex combination had a tolerable safety profile

- Most common TEAEs were cytopenias & fatigue
- Most TEAEs were mild/moderate and did not impact compliance
- No differences between cohorts

Thrombocytopenia, the main anticipated overlapping toxicity was manageable

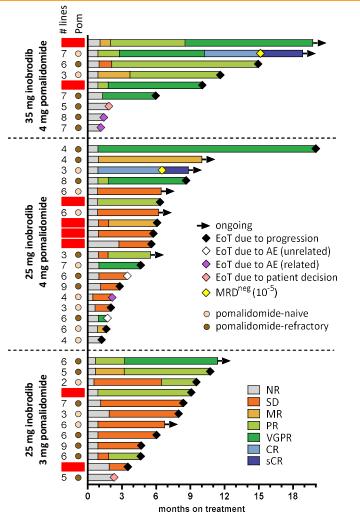

• Limited (mostly G1) bleeding events

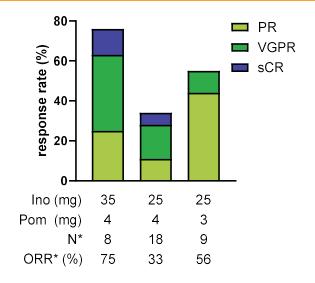

Low treatment discontinuation due to AEs


No new safety signals identified

Most frequent ≥25% (TEAEs) plus *1 patient with Grade 5 event (MI: not related to inobrodib)

Data cut 04 Nov 2024

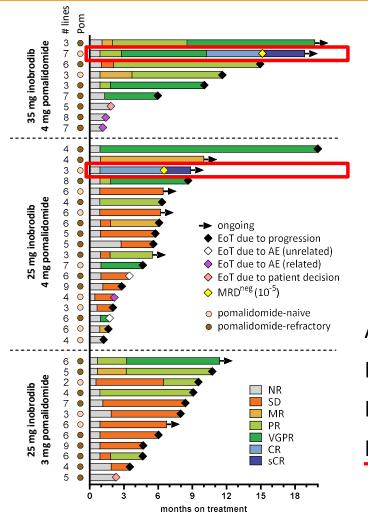


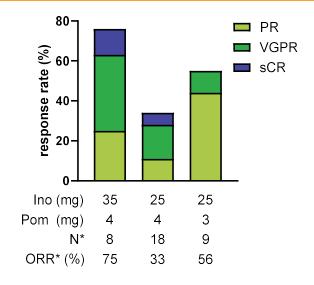


Across all cohorts: 49% ORR, mDOR 6.3 months , 63% of pts <u>></u> 6 mo.

Highest dose cohort: 75% ORR, mDOR 9.7 months

* Among evaluable patients




Across all cohorts: 49% ORR, mDOR 6.3 months , 63% of pts > 6 mo.

Highest dose cohort: 75% ORR, mDOR 9.7 months

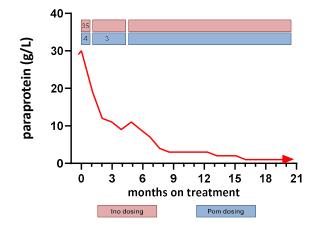
Pom-refractory patients (last line): 4/8 pts responded ≥PR, + 1 MR

* Among evaluable patients

Across all cohorts: 49% ORR, mDOR 6.3 months , 63% of pts ≥ 6 mo. Highest dose cohort: 75% ORR, mDOR 9.7 months Pom-refractory patients (last line): 4/8 pts responded ≥PR, + 1 MR Pom naïve pts: 2/12 achieved MRD negative sCR

* Among evaluable patients

Case studies

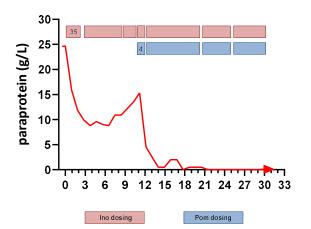

Pom-Refractory

61 yrs, F, ECOG PS 1

3 prior lines in 10m (DVTd, KRd, IsaPd)

Penta-drug refractory/pom last line

VGPR; ongoing 19.8m on InoPd (35mg)

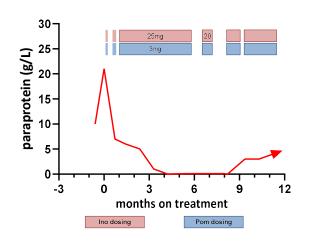

Pom-Naive

63 yrs, F, ECOG PS 1

7 *prior lines* (VTD,CTD,Vd, Dara, ASCT, Rd, VelPanoDex, Melphalan+ Pred)

Started study on Ino monotherapy

sCR & MRD^{neg} (10⁻⁵); ongoing 18.9m on InoPd (35mg)


Post BCMA / TCE

64 yrs, m, ECOG PS 0

6 prior lines (VTD,DTPACE,ASCT+Len, DVd, KPd, Elranatamab, Belantamab mafodotin, Benda/Thal/Methylpred)

Penta-drug, αBCMA / TCE refractory

VGPR; 11.2 m on 25mg Ino / 3mg pom

Searle E, et al. ASH 2024 [Abstract #1023]

Conclusions

- Inobrodib in combination with pomalidomide and dexamethasone (**InoPd**) shows a manageable safety profile, favorable pharmacokinetics and promising efficacy in heavily pre-treated RRMM
- The highest efficacy was seen at doses of 35mg BD (4 days on/3 days off) with 4mg pomalidomide (21 days) and dexamethasone with a 75% ORR and activity seen across all dosing levels
 - Two pomalidomide-naïve patients achieved an MRD negative sCR
 - Efficacy was observed in pomalidomide refractory and BCMA-TCE refractory patients
- No new safety signals were identified across the 3 dosing cohorts
 - Thrombocytopenia was the most frequent grade 3 /4 TEAE overall which was manageable, and bleeding
 events were infrequent
 - Neutropenia was the second most common TEAE, but febrile neutropenia was rare
- A randomized expansion evaluating three doses of Inobrodib with pom/dex is currently recruiting (NCT04068597)

Acknowledgements

The patients, their families and carers who made this study possible

- The physicians, nurses and all staff involved in data collection and analysis
- The study was funded by CellCentric Ltd, UK
- The study sites (myeloma):

The Christie Hospital, Manchester Western General Hospital, Edinburgh The Royal Marsden Hospital/Institute of Cancer Research, London University Hospital of Wales, Cardiff The Churchill Hospital, Oxford University College London Hospitals University Hospital Southampton NHS Foundation Trust

