A first-in-class p300/CBP bromodomain inhibitor for the treatment of prostate cancer and hematologic malignancies

Neil Pegg, PhD
Research Director
CellCentric Ltd, Cambridge UK

CCS1477 structure removed
CCS1477: first-in-class p300/CBP inhibitor

- Small molecule inhibitor of twin HAT proteins p300 and CBP, key cancer gene co-regulators
- CCS1477 is a potent, selective and orally bioavailable inhibitor of the common bromodomains of p300/CBP
- Inhibiting p300/CBP address the inherent or acquired resistance to existing prostate cancer drugs
- Haem cancers also exquisitely sensitive to p300/CBP inhibition
- In Phase 1 clinical trials
P300/CBP: Critical co-regulators of transcriptional networks, relevant to prostate and haematological tumours

Castrate resistant prostate cancer, and resistance to current 2nd generation anti-hormonal drugs, driven by AR, AR-SV, AR-mutations and c-Myc

Multiple blood cancers exquisitely sensitive to p300/CBP inhibition

Prostate Cancer (CRPC)

Multiple Myeloma

AML/NHL
CCS1477 is a potent and selective inhibitor of p300/CBP via binding to their conserved bromodomains.

<table>
<thead>
<tr>
<th></th>
<th>CCS1477</th>
<th>(R)enantiomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>p300/CBP Kd (nM)</td>
<td>1.3 / 1.7</td>
<td>263 / -</td>
</tr>
<tr>
<td>BRD4 Kd (nM)</td>
<td>222</td>
<td>921</td>
</tr>
<tr>
<td>BRD4 Selectivity / Others</td>
<td>170 / >1,000</td>
<td>3</td>
</tr>
<tr>
<td>Kinome scan @10uM; 97 kinases</td>
<td>No significant activity</td>
<td>-</td>
</tr>
<tr>
<td>Cerep Safety Screen 44 @10uM</td>
<td>No significant activity</td>
<td>-</td>
</tr>
<tr>
<td>22Rv1 cell prol. GI50 (nM)</td>
<td>96</td>
<td>1892</td>
</tr>
</tbody>
</table>
CCS1477 degrades AR-FL, AR-SV and c-Myc proteins, key drivers of CRPC, and reduces expression of AR-target genes in 22Rv1 cells.

Effects on AR protein are mediated by the proteasomal pathway (MG132 reversed).
CCS1477 preferentially inhibits AR-driven prostate cancer cells

<table>
<thead>
<tr>
<th>AR status</th>
<th>Cell Line</th>
<th>Model</th>
<th>CCS1477 Proliferation GI50 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td>LNCaP</td>
<td>Hormone responsive</td>
<td>0.230</td>
</tr>
<tr>
<td>AR-FL over-expressed</td>
<td>LNCaP-AR</td>
<td>CRPC</td>
<td>0.150</td>
</tr>
<tr>
<td>AR-FL, AR-SV</td>
<td>VCaP</td>
<td>CRPC</td>
<td>0.049</td>
</tr>
<tr>
<td>AR-FL, AR-SV</td>
<td>22Rv1</td>
<td>CRPC</td>
<td>0.096</td>
</tr>
<tr>
<td>AR negative</td>
<td>DU145</td>
<td>Hormone independent</td>
<td>1.280</td>
</tr>
<tr>
<td>AR negative</td>
<td>PC3</td>
<td>Hormone independent</td>
<td>1.490</td>
</tr>
</tbody>
</table>

Cell cycle analysis indicates G1 arrest for CCS1477 treated cells
CCS1477 free drug level (mouse) covers proliferation IC50 for 12hrs; and below BRD4 in-cell binding
CCS1477 blocks tumour growth in 22Rv1 mouse model of CRPC: including continued tumour growth block following drug withdrawal

![Graph showing the effect of CCS1477 on tumour growth.](image-url)

- **Drug treatment period**
 - Untreated
 - Vehicle QD
 - CCS1477 10mg/kg every day
 - CCS1477 30mg/kg every other day
 - CCS1477 20mg/kg every day

- **No drug treatment**
CCS1477 reduces biomarker expression in 22Rv1 xenograft

Reduction in biomarkers *in vivo* (day 7)

Inhibition of plasma PSA
CCS1477 active in enzalutamide-resistant prostate models

LNCaP95 cells with acquired resistance to enzalutamide

CCS1477 inhibits proliferation in enzalutamide-resistant cancer cells

Data from Jon Welti/Johann De Bono – ICR

Patient derived xenograft (PDx) model with enzalutamide resistance

Data from Jon Welti/Johann De Bono – ICR
CCS1477 active in patient explants and in combination with enzalutamide in resistant xenograft model

Prostate explants following radical prostatectomy

Vehicle | ENZ (10uM) | CCS1477 (10uM)

Proliferation (%)

Proliferation (Ki67 immunohistochemistry)

Data from Lisa Butler – University of Adelaide
Differentiation from BET inhibitors

CCS1477 affects less/different genes than JQ1 in 22Rv1 cells

CCS1477 retains activity in a JQ1/BETi resistant 22Rv1 cell-line

N.B. CCS1477 differentiated from BET inhibitors – Poster 3826 Tues 2nd, Apr 1-5pm
CCS1477 sensitivity: Cell panel screen in multiple myeloma, AML and NHL cell lines
CCS1477 reduces IRF4 and c-Myc in OPM2 multiple myeloma cells
CCS1477 causes tumour regression in OPM2 xenograft model of multiple myeloma, and continued tumour growth inhibition following drug withdrawal.
CCS1477 causes tumour regression in AML MOLM16 xenograft: extended tumour growth inhibition
CCS1477 inhibits the proliferation of AML cells via G1 cell cycle arrest and promotes myeloid differentiation in patient derived primary AML cells.

CCS1477 inhibits proliferation of THP-1 cells mediated via G1 cell cycle arrest.

Data from Tim Somervaille (CRUK, Manchester Institute)

CCS1477 (100nM) in patient derived AML cells.

Data from Tim Somervaille (CRUK, Manchester Institute)
CCS1477 preclinical PK

CCS1477 PK properties

<table>
<thead>
<tr>
<th></th>
<th>mouse</th>
<th>rat</th>
<th>dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5mg/kg iv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{1/2}$ (hr)</td>
<td>0.96</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Clobs (ml/min/kg)</td>
<td>14</td>
<td>13.2</td>
<td>35</td>
</tr>
<tr>
<td>Vss (l/kg)</td>
<td>1.1</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td>3mg/kg po</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{1/2}$ (hr)</td>
<td>1.6</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Clobs/F (ml/min/kg)</td>
<td>20</td>
<td>17.4</td>
<td>84</td>
</tr>
<tr>
<td>Vz/F (l/kg)</td>
<td>2.9</td>
<td>3.8</td>
<td>18</td>
</tr>
<tr>
<td>F (AUCall) %</td>
<td>73</td>
<td>75</td>
<td>45</td>
</tr>
</tbody>
</table>

Predicted human PK/dose

- Cl: 0.99ml/min/Kg
- Vss: 0.94L/Kg
- $T_{1/2}$: 11hrs
- Dose: 85-175mg daily

<table>
<thead>
<tr>
<th></th>
<th>mouse</th>
<th>rat</th>
<th>dog</th>
<th>human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free fraction (%)</td>
<td>3.0-3.2</td>
<td>4.0-5.8</td>
<td>8.4-9.8</td>
<td>1.7-2.7</td>
</tr>
</tbody>
</table>
Findings consistent with primary mode of action

- 28d toxicity studies in rodent (rat) and non-rodent (dog)
- Rat 28 day study – dose proportional weight reduction in male androgen-dependent organs
- No cardiac effects in an *in vivo* dog telemetry study

- Dose-proportional reduction in platelets
 - Fully reversible
 - Impact reduced by less frequent dosing
 - No greater effect on re-dosing

CCS1477 Preclinical Safety

CCS1477's unusual off-drug duration of effect allows intermittent dosing to be explored if required, without potential loss of efficacy
CCS1477 drug supply: into the clinic

- API - 4 stage GMP process
- No chromatography
- Multi-Kg scale

- Drug Product - Simple capsule of API in semi-solid lipid excipient
- Available in 100mg, 50mg, 25mg capsules
- Suitable for 1 or 2 capsules per dose

Late stage prostate cancer (CRPC)
- Monotherapy
- Combined with enzalutamide
- Combined with abiraterone

Haematological malignancies
- Monotherapy
- AML
- MM, Lymphomas

Prostate trial started July 2018
To start end Q2 2019

Up to 30 patients per sub-group
Summary

- CCS1477: potent, selective and orally bioavailable inhibitor of p300/CBP bromodomains
- Causes significant tumour growth inhibition in models of prostate cancer and haematological malignancies
- Accompanying changes in biomarkers are consistent with the mechanism of action
- Extended duration of tumour growth inhibition in the absence of drug
- Bromodomain inhibition of p300/CBP represents a differentiated approach
- Can be used as a monotherapy or in combination with SOC agents
- CCS1477 in Phase 1 for CRPC. Phase 1 for AML/MM/NHL shortly to follow.
Acknowledgements

CellCentric
Nigel Brooks
Karen Clegg
Fay Ashby
Tomasz Knurowski
Thea Stanway
Will West

Sygnature Discovery
Barbara Young
Amy Prosser
Jordan Lane
David Taddei
Richard Brown
Gareth Harbottle
Jonathan Shannon
Silvio Pauletta
Meera Raja
Stuart Thomson

Proteros Biostructures
Anja Jestel
Andreas Griessner

Xenogesis
Richard Weaver
Graham Trevitt

Axis Bioservices
Jenny Worthington

CrownBioscience
Rita Ren

HD Biosciences
Beirong Gao

Sequani
Kerry Illston

Aptuit
Paul Baguley

Prosynth
Don Gilbert

Quay Pharma
Jamie Farrar

Academics / Consultants
Johann De Bono
Karen Knudsen
Andy Davies
Tim Somervaille
Laura Pasqualucci
Lisa Butler
Luke Gaughan
Martin Page
Paul Elvin

Development Consultants
Claire Sadler (ApconiX)
Paul Madeley (SynthIsis)
Marcel De Matas (Seda)
Sean McCrossen (Seda)
Tanya Coleman (Coleman Scientific)